23 research outputs found

    The role of metformin response in lipid metabolism in patients with recent-onset type 2 diabetes: HbA1c level as a criterion for designating patients as responders or nonresponders to metformin

    Get PDF
    Background: In this study, we investigated whether response to metformin, the most frequently drug for diabetes treatment, influences the therapeutic effects of antilipidemic medication in newly diagnosed patients with type 2 diabetes mellitus (T2DM). Methods: A total of 150 patients with T2DM were classified into two groups following 3 months of metformin therapy (1000mg twice daily): responders (patients showing >1% reduction in HbA1c from baseline) and nonresponders (patients showing <1% reduction in HbA1c from baseline). The patients received atorvastatin 20 mg, gemfibrozil 300 mg, or atorvastatin 20 mg and gemfibrozil 300 mg daily. Principal Findings: HbA1c and fasting glucose levels were significantly different between baseline and 3 months among responders receiving atorvastatin; however, these differences were not statistically significant in nonresponders. Atherogenic ratios of low-density lipoprotein cholesterol to high-density lipoprotein cholesterol (LDL-C/HDL-C; p = 0.002), total cholesterol to HDL-C (TC/HDL-C; p<0.001) and AIP (the atherogenic index of plasma; p = 0.004) decreased significantly in responders receiving atorvastatin than in nonresponders. Moreover, responders receiving atorvastatin showed a significant increase in HDL-C levels but nonresponders receiving atorvastatin did not (p = 0.007). The multivariate model identified a significant association between metformin response (as the independent variable) and TG, TC, HDL-C and LDL-C (dependent variables; Wilk's λ = 0.927, p = 0.036). Conclusions: Metformin response affects therapeutic outcomes of atorvastatin on atherogenic lipid markers in patients newly diagnosed with T2DM. Metformin has a greater impact on BMI in responders of metformin compared to nonresponders. Adoption of better therapeutic strategies for reducing atherogenic lipid markers may be necessary for metformin nonresponders. © 2016 Kashi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    The Rapid and Sensitive Quantitative Determination of Galactose by Combined Enzymatic and Colorimetric Method: Application in Neonatal Screening

    Get PDF
    The quantitative measurement of galactose in blood is essential for the early diagnosis, treatment, and dietary monitoring of galactosemia patients. In this communication, we aimed to develop a rapid, sensitive, and cost-effective combined method for galactose determination in dry blood spots. This procedure was based on the combination of enzymatic reactions of galactose dehydrogenase (GalDH), dihydrolipoyl dehydrogenase (DLD), and alkaline phosphates with a colorimetric system. The incubation time and the concentration of enzymes used in new method were also optimized. The analytical performance was studied by the precision, recovery, linearity, and sensitivity parameters. Statistical analysis was applied to method comparison experiment. The regression equation and correlation coefficient (R2) were Y = 0.0085x + 0.032 and R2 = 0.998, respectively. This assay exhibited a recovery in the range of 91.7–114.3 % and had the limit detection of 0.5 mg/dl for galactose. The between-run coefficient of variation (CV) was between 2.6 and 11.1 . The within-run CV was between 4.9 and 9.2 . Our results indicated that the new and reference methods were in agreement because no significant biases exist between them. Briefly, a quick and reliable combined enzymatic and colorimetric assay was presented for application in newborn mass screening and monitoring of galactosemia patients. © 2016 Springer Science+Business Media New Yor

    The complex combination of COVID-19 and diabetes: pleiotropic changes in glucose metabolism

    Get PDF
    Purpose: Angiotensin converting enzyme 2 (ACE2) is the door for SARS-CoV-2, expressed in critical metabolic tissues. So, it is rational that the new virus causes pleiotropic alterations in glucose metabolism, resulting in the complication of pre-existing diabetes’s pathophysiology or creating new disease mechanisms. However, it seems that less attention has been paid to this issue. This review aimed to highlight the importance of long-term consequences and pleiotropic alterations in glucose metabolism following COVID-19 and emphasize the need for basic and clinical research in metabolism and endocrinology. Results: SARS-CoV-2 shifts cellular metabolism from oxidative phosphorylation to glycolysis, which leads to a decrease in ATP generation. Together with metabolic imbalance, the impaired immune system elevates the susceptibility of patients with diabetes to this deadly virus. SARS-CoV-2-induced metabolic alterations in immune cells can result in hyper inflammation and a cytokine storm. Metabolic dysfunction may affect therapies against SARS-CoV-2 infection. The effective control of metabolic complications could prove useful therapeutic targets for combating COVID-19. It is also necessary to understand the long-term consequences that will affect patients with diabetes who survived COVID-19. Conclusions: Since the pathophysiology of COVID-19 is still mostly unknown, identifying the metabolic mechanisms contributing to its progression is essential to provide specific ways to prevent and improve this dangerous virus’s detrimental effects. The findings show that the new virus may induce new-onset diabetes with uncertain metabolic and clinical features, supporting a potential role of COVID-19 in the development of diabetes

    Purification and Characterization of Recombinant Darbepoetin Alfa from Leishmania tarentolae

    Get PDF
    Darbepoetin alfa is a biopharmaceutical glycoprotein that stimulates erythropoiesis and is used to treat anemia, which associated with renal failure and cancer chemotherapy. We herein describe the structural characterization of recombinant darbepoetin alfa produced by Leishmania tarentolae T7-TR host. The DNA expression cassette was integrated into the L. tarentolae genome through homologous recombination. Transformed clones were selected by antibiotic resistance, diagnostic PCRs, and protein expression analysis. The structure of recombinant darbepoetin alfa was analyzed by isoelectric focusing, ultraviolet–visible spectrum, and circular dichroism (CD) spectroscopy. Expression analysis showed the presence of a protein band at 40 kDa, and its expression level was 51.2 mg/ml of culture medium. Darbepoetin alfa have 5 isoforms with varying degree of sialylation. The UV absorption and CD spectra were analogous to original drug (Aranesp), which confirmed that the produced protein was darbepoetin alfa. Potency test results revealed that the purified protein was biologically active. In brief, the structural and biological characteristics of expressed darbepoetin alfa were very similar to Aranesp which has been normally expressed in CHO. Our data also suggest that produced protein has potential to be developed for clinical use. © 2016, Springer Science+Business Media New York

    Cloning and expression of codon-optimized recombinant darbepoetin alfa in Leishmania tarentolae T7-TR

    Get PDF
    Darbepoetin alfa is an engineered and hyperglycosylated analog of recombinant human erythropoietin (EPO) which is used as a drug in treating anemia in patients with chronic kidney failure and cancer. This study desribes the secretory expression of a codon-optimized recombinant form of darbepoetin alfa in Leishmania tarentolae T7-TR. Synthetic codon-optimized gene was amplified by PCR and cloned into the pLEXSY-I-blecherry3 vector. The resultant expression vector, pLEXSYDarbo, was purified, digested, and electroporated into the L. tarentolae. Expression of recombinant darbepoetin alfa was evaluated by ELISA, reverse-transcription PCR (RT-PCR), Western blotting, and biological activity. After codon optimization, codon adaptation index (CAI) of the gene raised from 0.50 to 0.99 and its GC content changed from 56 to 58. Expression analysis confirmed the presence of a protein band at 40 kDa. Furthermore, reticulocyte experiment results revealed that the activity of expressed darbepoetin alfa was similar to that of its equivalent expressed in Chinese hamster ovary (CHO) cells. These data suggested that the codon optimization and expression in L. tarentolae host provided an efficient approach for high level expression of darbepoetin alfa. © 2015 Elsevier Ltd. All rights reserved

    Oxidized LDL-regulated microRNAs for evaluating vascular endothelial function: molecular mechanisms and potential biomarker roles in atherosclerosis

    No full text
    As a simple monolayer, vascular endothelial cells can respond to physicochemical stimuli. In addition to promoting the formation of foam cells, oxidized low-density lipoprotein (ox-LDL) contributes to the atherosclerotic process through different mechanisms, including endothelial cell dysfunction. As conserved noncoding RNAs, microRNAs (miRNAs) naturally lie in different genomic positions and post-transcriptionally regulate the expression of many genes. They participate in integrated networks formed under stress to maintain cellular homeostasis, vascular inflammation, and metabolism. These small RNAs constitute therapeutic targets in different diseases, including atherosclerosis, and their role as biomarkers is crucial given their detectability even years before the emergence of diseases. This review was performed to investigate the role of ox-LDL-regulated miRNAs in atherosclerosis, their molecular mechanisms, and their application as biomarkers of vascular endothelial cell dysfunction. © 2021 Informa UK Limited, trading as Taylor & Francis Group

    Epigenetic alterations and genetic variations of angiotensin-converting enzyme 2 (ACE2) as a functional receptor for SARS-CoV-2: potential clinical implications

    No full text
    Receptor recognition is a crucial step in viral infection and is a critical factor for cell entry and tissue tropism. In several recent studies, angiotensin-converting enzyme 2 (ACE2) has been demonstrated to be the cellular receptor of SARS-CoV-2 as it was previously well known as the receptor of SARS-CoV. SARS-CoV-2 can bind with high affinity to human ACE2 and engages it as an entry receptor. It seems that the genetic, notably epigenetic variations of ACE2 are less known in different populations, indicating the need for its further investigation. These variations have the potential to affect its contribution to the pathogenicity of COVID-19. The contribution of epigenetics in the interindividual variability of ACE2 merits more attention because epigenetic processes can play important roles in ACE2 alterations in various tissues and different people and populations. Analyzing different DNA methylation patterns and microRNAs, contributing to the ACE2 modulation in the lungs will have a high priority. The epigenetic and genetic variations of ACE2 become even more important when considering that some people have mild clinical symptoms despite having COVID-19. The pathogenicity of SARS-CoV-2 infection is complex; therefore, a better understanding of the underlying pathobiology, especially binding the virus to its receptors, could help improve therapeutic and preventive approaches. This review aims to highlight the importance of evaluating both the epigenetic and genetic variations of ACE2 as a receptor for the deadly SARS-CoV-2. © 2021, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature

    Biochemical parameters and pathogenesis of SARS-CoV-2 infection in vital organs: COVID-19 outbreak in Iran

    No full text
    Since its emergence, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread worldwide, and led to ever-increasing mortality. SARS-CoV-2 infection perturbs the function of the body's vital organs, making patients of all ages susceptible to the disease. Nevertheless, individuals developing critical illness with poor outcomes were mostly the elderly and people with co-morbid conditions, who constituted the vast majority of coronavirus disease 2019 (COVID-19) fatalities. Complications of COVID-19 mostly involve the respiratory, renal and cardiovascular systems, and in severe cases secondary infections leading to pneumonia and acute respiratory distress syndrome, which may precede the death of the patient. Multi-organ failure in individuals with COVID-19 could be a consequence of their co-morbidities. A patient's pre-existing conditions may affect the disease prognosis, requiring immediate attention to accurately detect and evaluate them in SARS-CoV-2-infected individuals. This review addresses several issues in relation to manifestations of the body's vital organs along with potential diagnostic blood factors in SARS-CoV-2 infection. It is hoped that the review will lead to more comprehensive understanding of this complex disease. © 2020 The Author

    Enzymatic characterization of a NADH-dependent diaphorase from Lysinibacillus sp. strain PAD-91

    No full text
    Diaphorases are flavin-containing enzymes with potential applications in biotransfomation reactions, biosensor design and in vitro diagnostic tests. In this paper, we present recombinant expression, characterization and medium optimization of a lipoamide dehydrogenase (DLD) with NADH-dependent diaphorase activity from a Lysinibacillus sp. strain. DLD encoding sequence showed an open reading frame of 1413-bp encoding a 470 amino acid chain. Lysinibacillus sp. DLD catalyzed the NADH-dependent reduction of electron acceptors and exhibited diaphorase activity. The molecular mass of the isolated enzyme was found to be about 50 kDa, and determined to be a monomeric protein. The optimum pH and temperature for the catalytic activity of the enzyme was about pH 7.5 and 30 °C. The Km and Vmax values were estimated to be 0.025 mM and 1.33 μmol/min, respectively. Recombinant enzyme was optimally produced in fermentation medium containing 10 g/L sucrose, 25 g/L yeast extract, 5 g/L NaCl and 0.25 g/L MgSO4. By Scaling up fermentation from flask to bioreactor, enzyme activity was increased to 487.5 U/ml. This study provides data on the identification, characterization and medium optimization of a NADH-dependent diaphorase from a newly isolated Lysinibacillus sp. PAD-91. © 201

    R-carrying genotypes of serum paraoxonase (PON1) 192 polymorphism potentiates the risk of ischemic stroke

    No full text
    corecore